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SCOPE OF THE WORLD FUSION PROGRAM

• At last count  - 33 countries, 180 institutions (67 in the US)

• Emphasis Varies

! US priority to science mission for now, US has withdrawn from burning

plasma project - ITER

! EU, Japan give priority to energy mission





FACILITIES AND INFRASTRUCTURE ARE EXTENSIVE



BOUT is 3D EM Boundary 
Plasma Turbulence Code

l Boundary Plasma Turbulence has a 
   different characters than in the core and
   play an important role in core confinement 

l BOUT is an unique code to simulate boundary
    plasma turbulence in a complex geometry 

Þ Observed large velocity shear layer
Þ Proximity of open+closed flux surface
Þ Presence of X-point

l BOUT is being applied to DIII-D, C-mod, 
   NSTX,  ITER for Snowmass, ... 
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Local Safety Factor, ν(ψ,θ), has 
strong variations near X-points 
that affect mode
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ν(ψ,θ)=a   Bt/(RBp)eff

☞ Strong X-point shear

☞ long connection length



Density fluctuation is ballooning for 
X-point geom. vs. flute for shifted-circle
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A suite of the codes work together 
to make BOUT simulation results 
     similar to real experiments 
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BOUT Simulation

NSTX GPI Data
(Maqueda et al,
RSI, 72 1,931(2001)

BOUT shows similar frequency 
spectrum as Gas Puff Image
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BOUT Simulates Mode Similar to C-Mod Quasi-Coherent Mode
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☞ Strong Dissipation near X-point

→Resistive X-point Mode

☞ Code Result well Localized 
in f and k  resembles PCI 
measurements
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Γ =<δnδv  >(x10   /m  s)ψ ψ 20 2

Particle Flux Γ  is consistent
   with probe measurement 
      near midplane region
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L-Mode Edge Turbulence
in DIII-D



Density ↑ with P=const.

Dansity Limit: High collisionality ⇒ fluctuation 
level/transport ↑ and parallel correlation length ↓

Drift wave         Resistive MHD         Disruption
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Calculated Mode Structure from 
   BOUT and ELITE Consistent 
with Observed DIII-D ELM Depth 
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☞ Further support for predicted mode 
structure provided by divertor balance
experiment (T.Petrie): ELM signals 
absent on high field side for double-null



BOUT is a parallelized 3D nonlocal electro-
    magnetic turbulence code using MPI
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The BOUT code solves for the plasma 
fluid equations in a 3-D toroidal segment.

BOUT uses a fully implicit Newton-Krylov 
solver PVODE. 

BOUT is a parallelized code based on domain
decomposition that uses the MPI system. 

BOUT has been tested on Linux PC clusters, 
Sun and DEC workstation clusters, and on the 
NERSC IBM SP and Cray-T3E. 

Parallel for one direction; parallelization in
second direction is under way, 
will use~1000---10000 PEs

Mflop/s rates achieved is typically ~ 5---10%
on IBM SP

✤

✤

✤

✤

✤

✤



The poloidal plane is divided 
into four main regions for the 
domain decomposition model 
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Each of four main regions can be 
futher subdivided for the domain 
        decomposition model 
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Schemic showing the two major com-
ponents of parallel BOUT Code as 
replicated on each domain processor 
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   Time history of linear growth and 
             turbulence saturation
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Time step showed in BOUT over the course
of a time-dependent simulation showing
improvement with Krylov vs. func. iter.
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      Comparison of Adams Predictor-Corrector and Newton-Krylov
                (BDF) Statistics in Linear Stage of the Simulation
                        Number of             Number of                           Observed
Method           RHS evaluations    time steps   Average Ωci∆t    ∆torder
One-step P/C         6212                     5756              0.01               1
BDF Newton          1091                     115                 0.7               3-4
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Parallel Speed-up of BOUT on T3E
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Parallel Speed-up of BOUT on Sunbert

BOUT results show an almost linear 
      speedup on T3E and Sunbert 



Huge range of spatial and temporal scales 
is a challenge to theory and simulations 
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☞ Overlap in scales often means that strong 
     theoretical ordering is not possible



BOUT simulates only part of boundary
           problems---Turbulence 
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☞ It is even not possible to simulate whole
         boundary physics yet on today machines
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BlueGene/L will provide enough computing
     power to simulate boundary physics 

A proposed Kinetic BOUT code: 2V3D

Time ~ 10 --- 100 ms,
Thus number of timestep ~ 1×10  --- 1×10  6 7

Resolution 30×30×100×100×1000~10  , 
∆x~ 1mm, ion gyroradius spatial scale,
∆t ~ 10   second, Alfven time scale -8

10

Number of operation/grid point/step ~ 1000

Total operations count to carry out the 
simulations ~10 19---10 20

With a 100 TF machine, the time required 

~10   ---10   /(10   ×3600)~30 --- 300 hours19 20 14

☞

☞

☞

☞

☞



Issues of BOUT performance on BlueGene/L

✤ We anticipate use ~10000 PEs on BlueGene/L, 
     ➢ ~ a flux tube per PE
     ➢ Issues:
          Parallel I/O:
          Communications: Latence & bandwidth
          File management:~1000-10000 files per simulation
          Storage: ~ 1TB of data per simulation
          Unknown:

✤ The division of work for BOUT on IBM SP ~ 100 PEs:
      ➢ 80% for evaluating the BOUT physics equations, 
      ➢ 1% for I/O, 

     

     ➢ 12% for internal PVODE calculations, 
     ➢ 6% for interprocessor MPI communications, 
     ➢ 1% for other overhead costs,
     ➢ 1% variation for the load balance among processors.

➳ a pointer variable is set so that each processor only reads 
     a subset of the data needed for its domain. 
➳  each processor writes and reads its own dump file for the 
     data in its domain for restarting the problem.


